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A. Details on importance sampling (Section

3.4.2)

This section discusses the technical implementation de-

tails on an efficient sampling strategy to evaluate

Ind (p;ϕ, ψ) :=

∫

H2

fnd (x, ω, ωo;ϕ, ψ)L (x, ω) 〈ω,n〉 dω.
(1)

Importance sampling is a powerful tool to estimate the inte-

gral in (1) and we refer the interested reader to [9], Chapter

13 for the mathematical reasoning behind it. The Monte-

Carlo estimator used for Eqn. (1) using the non-diffuse part

of the simplified Disney BRDF is the finite sum of the form,

Ind(p;ϕ,ψ)=
1

N

N
∑

j=1

fnd(x,Ωj ,ωo;ϕ,ψ)L(x,Ωj)〈Ωj ,n〉
p(Ωj)

,

(2)

where the random variables Ωj are samples drawn from the

probability density function p(ω). We expect, i.e. given

enough samples N ,

E [Ind (p;ϕ, ψ)] = Ind (p;ϕ, ψ) , ∀p, ϕ, ψ. (3)

The probability density function used in our approach is

p (ω) =
1

2

|〈ω,n〉|
π

+
1

2

D (ϕ) |〈h,n〉|
4 |〈ωo, h〉|

. (4)

To evaluate (2), we need to be able to sample random vari-

ables Ωj from p(ω) and we realize this the following way:

Given the j-th observation of random variables following a

uniform distribution over [0, 1), Xj
0 , X

j
1 , X

j
2 ∼ U(0, 1), we

calculate a sample of incident direction as

Ωj =

{

TsH2(Xj
1 , X

j
2), X

j
0 <

1
2 ,

R(ωo, Ths(X
j
1 , X

j
2)), else,

(5)

where R(ωo, h) = 2 〈ωo, h〉h−ωo resembles the reflection

of ωo on h, and T := (t1, t2, t3) ∈ R
3×3 is an orthonormal

basis transform in the normal’s coordinate system, aligning

the north pole of H2 with the normal n,

t1 = t2 × t3 (6)

t2 =







(−ny,nx,0)
⊤

‖(−ny,nx,0)‖
, |nx| > |nz| ,

(0,−nz,ny)
⊤

‖(0,−nz,ny)‖
, else,

(7)

t3 = n. (8)

To sample the diffuse lobe of the BRDF (the case when

X
j
0 < 1

2 in (5)), we generate random samples on the up-

per hemisphere H2 using sH2 : [0, 1)2 → H2,

sH2(x1, x2) =





s1
s2

√

max (0, 1− s21 − s22)



 , (9)

with s1 :=
√
x1 cos (2πx2) and s2 :=

√
x1 sin (2πx2).

The non-diffuse lobe of the BRDF (the case when X
j
0 ≥ 1

2
in (5)) is sampled using hs : [0, 1)

2 → H2,

hs(x1, x2) =





sin (θ) cos (2πx1)
sin (θ) sin (2πx1)

cos (θ)



 , (10)

with θ := cos−1
(√

1−x2

1+(ϕ̂2−1)x2

)

.

B. Details on capturing process (Section 4)

We perform two full scans of a room sized environment,

where camera poses are recovered using SLAM [2, 7], ge-

ometry is reconstructed with [8]. In a post-processing step

we fill larges holes manually or using Poisson reconstruc-

tion [4, 5] and repair any remaining issues automatically

using [3]. Object segmentation is carried out in a manual

step.



C. Further quantitative results on albedo and

shading estimation validation (Section 4.1)

Additional qualitative results of the albedo and shading

estimation applied to real-world data sets are shown in Fig-

ure 1.

D. Further quantitative results on specular

appearance estimation validation (Section

4.2)

This section discusses further quantitative results of

the specular appearance estimation for novel views. The

main paper depicts quantitative results as well as a quali-

tative visualization of notable peaks in the corresponding

graph on the “Office 1” sequence of [11]. For full in-

sight, we show the results on the remaining sequences of

the Replica datasets [11], cp. Figure 2 for insight in the

“Office” sequences using the L2 metric, Figure 3 for in-

sight in the “Office” sequences using the FLIP evaluator [1],

Figure 4 for insight in the “Room” sequences using the L2

metric, and Figure 5 for insight in the “Room” sequences

using the FLIP evaluator [1].

Figures 2 and 3 show results on the “Office” sequences

of [11], they consist of 1293, 2117, 2459, and 2101 frames,

which include 24, 38, 43, and 31 target frames, respectively,

thus incorporating 1269, 2079, 2416, and 2070 novel, un-

seen viewpoints. The “Office 0”, “Office 2”, “Office 3”,

and “Office 4” sequences have their largest improvement

and deterioration for the L2 error at frames (1264, 243),
(629, 910), (1799, 2319), and (1899, 1903), respectively

and are visualized for qualitative inspection in Figure 2. The

same sequences have their largest improvement and deteri-

oration for the FLIP evaluator [1] at frames (1263, 163),
(1801, 1107), (1799, 637), and (1899, 1929), respectively

and are visualized for qualitative inspection in Figure 3.

Figure 4 shows results on the “Room” sequences of [11],

they consist of 2642, 1828, and 1789 frames, which in-

clude 51, 33, and 34 target frames, respectively, thus incor-

porating 2591, 1795, and 1755 novel, unseen viewpoints.

The “Room 0”, “Room 1”, and “Room 2” sequences have

their largest improvement and deterioration for the L2 er-

ror at frames (1856, 1203), (31, 114), and (604, 118), re-

spectively and are visualized for qualitative inspection in

Figure 4. The same sequences have their largest improve-

ment and deterioration for the FLIP evaluator [1] at frames

(1552, 1204), (31, 83), and (656, 118), respectively and are

visualized for qualitative inspection in Figure 5.

Overall, the average reconstruction error decreases for

all experiments and validates our findings described in Sec-

tion 4.2.1 on a larger scale. This can also be seen qualita-

tively; note the overall increase of realism, for the improve-

ments, due to view-dependent effects, while the deteriora-

tions seem to be only slightly worse than the baseline, but

still visually pleasing to the human eye – an effect desired

in AR/VR/MR applications.

Further quantitative results on the Room sequences

of [11] are shown in Figure 6. For specular highlights that

seem too wide such as the vase in “Room 0” our reconstruc-

tions still look more faithful compared to a purely diffuse

one. Notice that the anisotropic BRDF of the window blinds

in “Room 2” is difficult to recover with our approach as we

do not model this effect. Instead, we estimate an isotropic

approximation of it, which still looks realistic.

Robustness against inaccurate geometry can affect the

final reconstruction in accuracy and realism. Figure 3 “Of-

fice 3” shows how specularities are misplaced and BRDF

estimates too rough, if the geometry (clock) is inaccurate

at the location of reflection. Figure 4 and 5 “Room 1” and

Figure 6 “Room 0” and “Room 1” show results were differ-

ent levels of deteriorated geometry affects the non-diffuse

BRDF estimate. While the vase in “Room 1” is almost dif-

fuse, the vase in “Room 0” shows specular reflections, al-

though not as strong as the capture. The reason for both

failures are caused by an estimated specular highlight hav-

ing no overlap with the genuine reflection, cp. the error

maps in Figure 6 “Room 0”, the specular reflections are not

perfectly superimposed.

E. Further Relighting results (Section 4.3)

Further renderings under novel lighting with artificially

placed objects are shown in Figure 7.

F. Attached video file

The video file attached to the supplementary material

shows a number of video renderings of our results as well

as comparisons to the baseline. This video is encoded with

the H.264 codec in an MP4 container. Some of the images

shown in the video will have a somewhat grainy appearance

- this is caused by the relatively simple path tracer we im-

plemented for visualizing the results of our approach, rather

than being an intrinsic part of the estimated appearance.
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Figure 2. Overall Mean L2 error across the “Office” datasets of [11] along with the largest improvement, deterioration and the correspond-

ing L2 error maps.
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Figure 3. Overall Mean FLIP [1] error across the “Office” datasets of [11] along with the largest improvement, deterioration and the

corresponding FLIP error maps.
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Figure 4. Overall Mean L2 error across the “Room” datasets of [11] along with the largest improvement, deterioration and the correspond-

ing L2 error maps.
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Figure 5. Overall Mean FLIP [1] error across the “Room” datasets of [11] along with the largest improvement, deterioration and the

corresponding FLIP error maps.
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Figure 6. Side-by-side comparisons between the diffuse and the proposed reconstruction along with the ground truth and the corresponding

L2 errors and FLIP evaluator [1]. Adding the proposed specular appearance estimate makes reconstructions more realistic.

Figure 7. Complete synthetic relighting of different data sets (Office 0, Room 0 and Room 1 [11]) with additional virtually placed ob-

jects [10, 6].


