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Fig. 1. Reconstructing a scene with mirrors.From le� to right: Input color image showing the scanner with a�ached AprilTag in a mirror, reconstructed
geometry without taking the mirrors into account, reconstruction taking the detected mirrors (rendered as cross-hatched area) into account and a photorealistic
rendering of the scene including the mirrors. Detecting the mirrors is crucial for accurate geometry reconstruction and realistic rendering.

Planar re�ective surfaces such as glass and mirrors are notoriously hard to
reconstruct for most current 3D scanning techniques. When treated naïvely,
they introduce duplicate scene structures, e�ectively destroying the recon-
struction altogether. Our key insight is that an easy to identify structure
attached to the scanner�in our case an AprilTag�can yield reliable informa-
tion about the existence and the geometry of glass and mirror surfaces in a
scene. We introduce a fully automatic pipeline that allows us to reconstruct
the geometry and extent of planar glass and mirror surfaces while being able
to distinguish between the two. Furthermore, our system can automatically
segment observations of multiple re�ective surfaces in a scene based on their
estimated planes and locations. In the proposed setup, minimal additional
hardware is needed to create high-quality results. We demonstrate this using
reconstructions of several scenes with a variety of real mirrors and glass.
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1 INTRODUCTION
Active scanning techniques using Kinect-like sensors have recently
been used very successfully to reconstruct indoor scenes [Kähler
et al. 2015; Newcombe et al. 2011; Nieÿner et al. 2013]. One fre-
quently occurring element of such scenes�re�ective surfaces such
as mirrors and glass�has, rarely been treated in previous work.
While this at �rst sounds like a minor omission, mirrors actually
pose a signi�cant problem for any reconstruction system. A perfect
mirror shows a perfect re�ection of the world, which is indistin-
guishable from a direct observation of the mirrored world. The
mirror is therefore essentially �invisible�. The mirrored scene, how-
ever, will still be reconstructed using standard vision techniques.
Fig. 2 shows examples of bathrooms from the ScanNet dataset [Dai
et al. 2017] with re�ected scene parts reconstructed behind mirrors.

This mirrored geometry overlaps with real geometry located be-
hind the mirror and interferes with its reconstruction. It is therefore
not only desirable to reconstruct mirrors as standard elements in a
scene, but also necessary in order to avoid invalid reconstructions
of the overall scene. Similarly, glass surfaces are typically not recon-
structed by sensors but should still be included in a reconstructed
model. Due to the prevalence of mirrors and glass in common in-
door environments, recent scene reconstruction approaches such
as Matterport3D [Chang et al. 2017] require the user to manually
select windows and mirrors in a scan.

In this paper, we propose a method to automatically detect and
reconstruct mirrors and glass surfaces in a scene (see Fig. 1). Our
key idea is to add a tag to the capture rig that can only be observed
when the camera faces a mirror or glass surface. In our work, we
use a mirrored version of an AprilTag [Olson 2011; Wang and Olson
2016]. Based on observations of this tag, we not only detect re�ective
surfaces, but also robustly estimate the plane parameters of the
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Fig. 2. Example scans from the ScanNet dataset [Dai et al. 2017] with
artefacts due to mirrors.

surface. Additionally, we develop a multiple-feature-based approach
to detect the boundary of the planar mirroring surface.

Our contributions include:

� An automatic AprilTag-based approach, where we use a mir-
rored AprilTag to detect the existence of planar mirror or
glass surfaces in the scene.

� An automatic bundle adjustment-based calibration approach
to accurately detect the plane of the re�ective surface as well
as the relative tag location.

� An automatic approach to accurately reconstruct the bound-
ary of framed and unframed mirror and glass surfaces and to
distinguish between the two surface types.

� A thorough evaluation of our approach using quantitative
measures as well as high quality renderings.

2 RELATED WORK
In this section, we survey related work on detecting and recon-
structing re�ective surfaces and objects, focusing on the work most
relevant to our paper. We refer the reader to a recent state of the
art report for more details on recovering the geometry of specular
objects [Ihrke et al. 2010]. Our work uses a prototype 3D scanner,
which implements a standard projector-camera system with an in-
frared pattern and truncated signed distance function (TSDF) based
fusion. Since no modi�cation to the scanning and reconstruction
system is necessary, we refer the reader to the literature on KinectFu-
sion and follow-up publications for details and related work [Kähler
et al. 2015; Newcombe et al. 2011; Nieÿner et al. 2013].

2.1 Detecting Planar Reflective Surfaces
Planar glass and mirrors are di�cult to detect in regular images.
When light hits a glass surface, most of it enters the glass, is re-
fracted, and leaves at a di�erent location on the back. Only a small
fraction of the light (typically less than 10%, as determined by the
Fresnel equations) is re�ected on the front and back surfaces and
can be observed as two distinct, faint mirror images, unless it is
masked by the scene behind the glass [Shih et al. 2015]. The fact
that glass is a partially transparent and partially re�ective surface
provides valuable information since one can actually observe two
distinct signals from the transmitted and re�ected parts of the scene.
This is widely used in multi-signal time of �ight sensors [Foster et al.
2013; Jiang et al. 2017; Koch et al. 2017b,a]. Several passive imaging

approaches also rely on detecting and disentangling these two dis-
tinct image components. Applications include re�ection removal
[Arvanitopoulos et al. 2017; Xue et al. 2015] and scene reconstruc-
tion [Sinha et al. 2012; Wang et al. 2015; Wanner and Goldluecke
2013]. Other approaches rely on indirect observations, such as the
fact that glass absorbs some light, especially in the infrared part of
the spectrum [Klank et al. 2011] or changes the polarization state
of the light [Miyazaki et al. 2004].

A standard mirror is covered by a thin re�ecting layer at the
back side of the glass. The re�ection at this back side is typically
much stronger than the front re�ection, leading to the well known
mirroring e�ect with hardly any observable double images. High
quality mirrors for scienti�c applications have a re�ective layer
on the front surface (so called �rst surface mirrors), yielding an
even crisper re�ection. Given that we cannot observe two separate
scenes, detecting mirror surfaces is very challenging. One option is
to switch modalities, e.g., to use ultrasonic distance measurements,
which are re�ected from the mirror surface and can be reliably
observed under speci�c imaging geometries [Yang and Wang 2008;
Zhang et al. 2017].

In the optical domain, there are weak signals that can be used.
For example, time of �ight scanning systems that return multiple
observations along the line of sight may return a weak signal re-
�ected at the actual mirror surface. The presence of a framed mirror
can also be inferred from the observed depth discontinuity (also
called a jump edge) along the mirror-frame boundary [Käshammer
and Nüchter 2015; Yang and Wang 2011].

Active and purely passive optical approaches can detect the mirror
symmetry in captured images, depth images, or complete scene
models [Yang and Wang 2011]. While this approach can in principle
give a reliable indicator of the presence of a mirror in a scene, it
fails if a part of the scene is only observed in the mirror and never
seen directly. Finally, curved specular surfaces can be detected using
their distinct distortion patterns [DelPozo and Savarese 2007].

2.2 Reconstructing Reflective Surfaces
The geometry of specular surfaces is typically recovered by de-
tecting the specular re�ection of an extended target, enabling the
estimation of a normal direction to the surface observed at a given
pixel. The key challenge of this approach is that the target needs
to cover all relevant angles, which would in general require it to
completely surround the object [Balzer et al. 2014]. Most practical
approaches therefore use a limited-size target (see, e.g., [Liu et al.
2015; Tarini et al. 2005]) that can be moved around the object and
recorded in multiple capture sessions [Balzer et al. 2011]. In the
limit, one can even use the specular re�ection of a single point light
source aggregated over many frames [Chen et al. 2006]. Alterna-
tively, passive capture approaches make use of the full environment
re�ected in a planar [Sinha et al. 2012] or curved and more complex
surface [Godard et al. 2015]. For the special case of near-planar
surfaces, Ding and Yu [2008] interpret the re�ection as observed
under orthographic projection as a general linear camera and deter-
mine its parameters from the observation of a checkerboard target.
Jacquet et al. [2013] use re�ections of lines in large window panes
to reconstruct a normal �eld using a cut through the 3D video cube.
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2.3 Scenes with Mirror and Glass Surfaces
For active scanning applications, most systems are able to scan
through glass with a potential o�set due to refraction. Scanning
through a mirror surface is always possible as long as all light rays
are re�ected along the same planar mirror surface. This results in
the reconstruction of a mirrored copy of the true scene geometry,
located behind the mirror. Fasano et al. [2003] use mirrors in order
to scan hard to reach areas using a laser stripe pattern scanner. Since
regular mirrors provided low quality scan data, the authors use �rst
surface mirrors. They also propose an option for a hand-held mirror,
whose position they detect using markers on the mirror.

Foster et al. [2013] rely on the faint di�use re�ection observed on
glass (and mirror) surfaces using a multi-return time of �ight-based
system. Given the physical re�ection properties, glass can only be
observed in this way under a very restricted set of angles. They
extend the popular occupancy grid mapping, giving it the ability to
include surfaces that are only observable in a fraction of the frames
in which they should have been seen.

Jiang et al. [2017] use the intensity of the return signal for a
time-of-�ight (TOF) sensor, the distance to the surface, and the
incident angle as features for a neural network-based classi�cation
of glass surfaces in indoor environments. While su�cient for robot
navigation, their approach cannot yield high accuracy scan data.

Käshammer and Nüchter [2015] detect mirrors of known geom-
etry in TOF data. They �nd boundaries of framed mirrors using
the associated jump edges in depth. A similar metric is introduced
by Yang and Wang [2011] to detect candidate mirror locations. We
generalize the jump edge metric to also include frameless mirrors.
Further, we use the re�ection of an active tag in order to determine
mirror planes. As a result, we are able to detect planar mirrors with
unknown, arbitrary geometry in a scene.

An alternative line of work combines ultrasonic sensors with
classical optical scanning in order to detect glass and mirror surfaces.
Yang and Wang [2008] integrate a sonar sensor into a laser scanning
system to detect glass. Evidence of mirrors is detected at depth
discontinuities in the laser scans. The actual extent of a mirror
is detected by performing an ICP based registration of real and
re�ected geometry.

Zhang et al. [2017] augment a Kinect scanning device with an
ultrasonic distance sensor. They look for di�erences in optical and
ultrasonic depths and use an elaborate MRF-based inference in
order to detect the extent of glass and mirror surfaces. They can
also reconstruct curved surfaces by �tting a parametric surface to
the points from the acoustic sensor. One of the key limitations of
ultrasonic depth sensors is that the surface needs to be observed at
near-orthogonal angles, whereas our camera has a wide �eld of view
and our tag is visible from a substantially larger set of orientations
of the scanning rig.

3 OVERVIEW
The easiest way to identify a mirror or other semi-re�ective surface
such as glass in a scanning context is to identify the re�ection of
the scanning device itself in the mirror. While this is a classical
vision problem with a certain expected error rate, detection can
be simpli�ed by adding easy to detect features such as a colorful

area to the scanner. Since the scanner itself is typically not part of
the scene and needs to be removed from the scan (when directly
observed or seen in a mirror), this will have no negative impact on
the �nal scanned model.

We want, however, not only to detect the fact that a mirror is
present but also to recover its position, orientation, and extent.
For planar mirrors, this corresponds to �nding the corresponding
symmetry transform (to determine position and orientation) and
de�ning the extent of the mirror plane. One way to solve the former
problem is to attach a rigid calibration target to the scanning system
that can be detected reliably and allows the stable matching of
points on the target with feature locations in the recorded images
[Rodrigues et al. 2010]. A simple prototype for such a system could
be a standard cell phone that displays a calibration structure, records
images with the front-facing camera, and performs all the processing.
Once calibrated, such a system could reconstruct the mirror plane
in the camera coordinate system from a single image.

In Sec. 4, we describe how we use an AprilTag-based calibration
target attached to our scanner in order to detect glass and mirror
surfaces and to reconstruct the mirror plane. We currently use the
RGB camera of our scanning system for target detection, but this
could also be performed in the infrared domain, where our pattern-
based depth camera is operating. Since our actively illuminated
(backlit) target emits light di�usely at a luminance level similar to
the scene, it can easily be detected under a wide range of viewing
directions while having minimal in�uence on scene illumination
or, in the infrared case, the directionally emitted high frequency
pattern of the projector.

Sec. 5 discusses how we jointly estimate the position of the target
with respect to the scanner and the mirror plane. We then describe
how we distinguish observations of multiple mirrors in order to
reconstruct each of them separately (Sec. 6). In Sec. 7, we detail our
approach to accurately detect the extent of the mirror before gener-
alizing our method to also detect glass surfaces such as windows
(Sec. 8). We evaluate the full system quantitatively and qualitatively
for a wide range of scenes and re�ective surfaces (Sec. 9) and con-
clude with an outlook on future work.

4 DETECTING A MIRROR
To ensure a robust detection of our target, we use AprilTags [Olson
2011; Wang and Olson 2016], �ducial markers frequently used in the
robotics community. Detection using the authors' free implementa-
tion1 happens in multiple phases. After some basic image processing
for local intensity normalization, candidate locations are detected
as continuous bright regions containing a dark region. Next, the
edges and corners of the dark square region are extracted and the
numerical code corresponding to the tag is robustly decoded. Finally,
the edge locations are re�ned. Note that in order to directly use the
existing AprilTag library, we manufactured a mirrored version of
the tag that can only be detected when it is observed in a mirror.
The output of the AprilTag library is the set of detected AprilTags
per frame. Each detection contains the ordered image-location of
the four corners and the tag's center, the tag ID, as well as additional
information about the quality of the detection.

1https://april.eecs.umich.edu/software/apriltag/
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(a) Scanning rig. (b) Backlit mirrored AprilTag.

Fig. 3. The prototype of the scanning rig with a�ached backlit AprilTag.
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Fig. 4. Initialization of the optimization.Le�: Estimation of the mirror plane
and the tag to camera transformation from at least three virtual camera
estimations.Right:Estimation of the mirror plane from a single frame given
known Tct .

The AprilTags were constructed by applying 3M 468MP pressure
sensitive adhesive to Thorlabs BKF12 black aluminum foil. The
foil was then cut on a water jet and then sandwiched between
sheets of ABS plastic with the adhesive side up. (Note that this
supports only the manufacture of codes that consist of a single
connected component.) The laminated pattern was then mounted on
Metaphase backlights to ensure uniform illumination. We adjusted
the intensity of the backlights to match our overall system setup,
ensuring that no part of the captured tag is overexposed. Fig. 3 shows
the mirrored AprilTag mounted onto the backlight and attached to
our scanning rig. The width and height of the aluminum foil tag is
28:34mm.

5 MIRROR SURFACE ESTIMATION
In the following, we assume that a typical SLAM system yields an
accurate estimate of the pose of our scanning system for each frame
[Engel et al. 2018; Mur-Artal et al. 2015]. We formulate the problem
of estimating the mirror plane as minimizing the reprojection error
of the corner points of the AprilTag mounted to the scan head into
the camera view. This requires us to de�ne the generative model
for the projection, which we introduce in the following section.

5.1 Definitions
A transformationTba of a point from coordinate framea into a
coordinate frameb is represented as

Tba =
"
Rba ab
0> 1

#
2 SE(3); (1)

whereRba 2 SO(3) andab 2 R3 is the origin of framea expressed
in frameb such that_xb / Tba _xa . The pointsxa andxb are points
in R3; _xa and _xb represents their homogeneous lifting toR4. In our
setting, we work with three coordinate frames:

� The corners of the AprilTag are de�ned in tag spacet as
ct = (� !

2 ; � !
2 ; 0). ! denotes the width and height of the

black portion of the AprilTag. The center of the AprilTag is
located at the origin oft .

� The camera de�nes the camera framec with the image plane
aligned with thexy plane of the coordinate system.

� The world framew is de�ned as the reference frame given by
the SLAM system, which also yields the per-frame transfor-
mationTi

cw from world to camera space as well as its inverse
Ti

wc .

We de�ne the plane of the mirrorN using a standard plane pa-
rameterization as

N =
"
Dn
d

#
2 R4; (2)

such thatN � _x = 0 for pointsx on the plane.Dn is the unit length
normal of the plane andd is a scalar which represents the closest
approach of the plane with the origin. PlaneNa in framea can be
expressed in frameb using the following expression:Nb = T>

abNa .
Note the unusual use of the transformation matrixTab transposed
and not obeying the index notation ordering.

The symmetry transformSthat transforms a point_xa into the
virtual point _va as re�ected in the planar mirror surfaceNa via
_va = S(Na )_xa is then given by

S(N) �
"
R(Dn) 2dDn
0> 1

#
2 R4� 4 (3)

as described in Rodrigues et al. [2010]. The householder matrix

R(Dn) �
f
I3x3 � 2DnDn>

g
2 R3� 3 (4)

de�nes a re�ection on a plane through the origin.

5.2 Generative Model
Given the above de�nitions, we can now write down the reprojection
error for pj

t , the j 'th tag corner (or tag center) in imagei , using tag
coordinatest :

f i ; j (� ) = � c
�
Ti

cwS(Nw ) Ti
wcTct _pj

t

�
� ~pi ; j

c ; (5)

where ~pc is the observed (noisy) measurement ofpj
t in c and � c

is camerac's projection function,R3 ! R2. We use the Kannala
Brandt �sh-eye projection model [Kannala and Brandt 2006] for
this function.� is the optimization state vector consisting of the
tag to camera transformationTct and the mirror planeNw . Once
the system is calibrated, we can treatTct as �xed and include only
Nw . Combining all the observations of the tag yields the following
sum-of-squares objective:

F(� ) =
NX

i =1

5X

j =1

f
f i ; j (� )

g2
; (6)

which we minimize using Ceres [Agarwal et al. 2018] with appro-
priate initialization as described in the following section. Updates
to Tct occur on the manifold ofSE(3) and we use a local minimal
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parameterization for optimization,� ct 2 se(3) with an update step
at each iteration ofTct  Tcte� ct . We leave the homogeneous rep-
resentationNw over-parameterized and divide by the magnitude of
the �rst three components after convergence to reach the canonical
representation as shown in Eq. 2.

Although we do not do so here, our reprojection error could
also be included as a term within a classic SLAM or structure from
motion system to improve localization and provide more thorough
Bayesian treatment of the complete acquisition system.

5.3 Initialization and Calibration
Since Eq. 6, which we seek to minimize, is non-convex and Ceres
relies on gradient-based optimization, we must ensure an adequate
initialization of the parameters to reach a globally optimal solution.
Rodrigues et al. [2010] describe the calibration of a system with a
�xed camera, a �xed object outside the camera's view, and a moving
planar mirror, through which the camera can observe the object.
This is equivalent to our case of the scan system with a rigidly
connected camera and tag moving in front of a static mirror.

Following their approach, given known intrinsic calibration pa-
rameters for camerac and known dimensions of the AprilTag, we
compute the camera from virtual-target transformTi

ctv using stan-
dard exterior pose from known correspondence [Zhang 2000] for
each image of the tag in framei . This is depicted to the left in Fig. 4.
The output of the exterior pose estimation is a 6 degrees-of-freedom
transform, but the mirror plane minimally parameterized inR3 has
only 3 degrees-of-freedom. The subset ofSE(3) in which we ob-
serve motion informs us of the mirror plane. Given at least three
such transformsT1

ctv ; T2
ctv ; T3

ctv , we can estimate the initial values

for the mirror plane ~Nw which in turn allows us to compute the
real tag to camera transform~Tct . In practice, we observed that it is
su�cient to estimate ~Nw and to set~Tct to the identity to initialize
our non-linear re�nement.

5.4 Single Image Mirror Plane Estimation
Given the rigidity of the scanning system, we can calibrate the tag
to camera transformTct once by minimizing Eq. 6 and freezing the
result. This allows us to estimate the mirror plane~Nw from a single
frame. Similar to above, we estimate the poseTctv of the virtual
(i.e., re�ected) AprilTag with respect to camerac givenc's intrinsic
parameters and the AprilTag's known dimension! . The mirror
plane can now be established as that which bisects the corresponding
real and virtual corner locations as depicted in Fig. 4 to the right.
We use these single image mirror estimations as input for the next
section, where we perform a clustering step to split observations
from multiple mirrors and to estimate the �nal plane parameters
for each mirror.

Note that we only need to see the AprilTag in a single image and
can then transfer the observation information to all other frames
using the scene geometry and SLAM poses. Observing the mirror
(and potentially the AprilTag) in additional frames may increase
the accuracy of the estimated mirror plane and helps in accurately
detecting the mirror boundary as described in Sec. 7.

6 MULTI-MIRROR PARAMETER ESTIMATION
We proceed by assuming that each AprilTag observationi belongs
to its own mirror for which we can then estimateNi

w as discussed
previously. Additionally, we can intersect the center of the 2D tag
detection with the estimated plane to �nd the observation point
on the surface of the mirror through which our AprilTag has been
re�ected. Given the low false-detection rate of AprilTags, we have
high con�dence that this point belongs to a mirror surface. For each
observation, we now have a point and normal pair, [Pi

w ;Dni
w ].

To separate the observations into sets for each mirror in the scene,
we use a non-parametric clustering algorithm that we denote as
DP-planes, since it is derived from DP-means [Kulis and Jordan
2011] and DP-vMF-means [Straub et al. 2015]. Except for using
di�erent distance metrics, these algorithms perform the same k-
means-like alternating optimization: In step (1): incrementally assign
data points to the closest existing cluster unless the closest cluster
is further than some threshold� . In the latter case, a new cluster is
instantiated from the query data point. In step (2): recompute the
cluster centers given all associated data points. For a more detailed
algorithm description, we refer to the original papers. We take the
existing algorithm but modify the distance metric to a symmetrized
point-to-plane distance:

dist ([pa;Dna ]; [pb ;Dnb ] ) =
1
2

(k (pa � pb ) � Dnb k + k (pb � pa ) � Dna k) :

(7)

This distance measures how compatible two planar observations
are to one another and does not require that we choose an arbitrary
weighting between the angular and Euclidean components of the
observations. In step (2) of the DP-planes algorithm cluster centers
in the planar space are computed from the set of pointspi and
normalsni in clusterk, I k = fpi ;ni gNk

i =1, as

pk =

P
i 2I k

pi

Nk
nk =

P
i 2I k

ni

k
P

i 2I k
ni k

: (8)

As in the aforementioned algorithms, the DP-planes algorithm as-
signs data points to cluster centers via the symmetric point-to-plane
distance if the distance is within some threshold� , measured in
meters. If the distance exceeds this threshold, a new cluster is ini-
tialized with the value of the observation. We �nd� = 10cm to
yield good mirror-plane segmentation in all our experiments with
non-coplanar mirrors. For coplanar mirrors, we can re�ne the seg-
mentation using the boundary detection (see Sec. 7) and recompute
the mirror plane parameters for newly segmented mirrors.

Equation 8 directly provides a joint estimate of the plane pa-
rameters for each individual mirror, derived from the previously
independently estimated oriented surface samples. We use these for
all subsequent steps.

7 MIRROR BOUNDARY DETECTION
Given the mirror plane estimated in Sec. 5, we use it as a natural
parameterization for boundary extraction. We discretize the plane
into a grid with square cells, typically using a resolution of 5mm,
project all features discussed in the following onto this plane, and
extract the boundary using a total variation-based segmentation.
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(a) Discontinuities (b) Occluding (c) Geometry (d) Freespace (e)� 2
I (f) kr I k (g) Detections (h) ZNCC

Fig. 5. We explore eight di�erent feature channels to facilitate mirror segmentation. All channels are shown in log-scale using the �hot� colorscheme except
the rightmost ZNCC channel which is displayed from� 1 in blue to1 in red. The first four features are computed from the depth image. The discontinuities
channel (a) indicates the mirror boundaries and Occluding (b), Geometry (c) and Freespace (b) indicate structures in front of, right around and behind the
mirror plane. Feature channels (e) and (f) aim to extract mirror boundary information from image intensities: high intensity variance� 2

I indicates a reflective

surface and high average intensity gradientkr I k is expected at the mirror boundary. Channel Detections (g) accumulates the AprilTag detections. Using the
zero-mean normalized cross-correlation (ZNCC) of the AprilTag appearance with the actual predicted image intensities, the ZNCC channel (h) allows us to
harvest non-mirror detections at low ZNCC-valued areas.

(a)g (b) f (c) � (d)u

Fig. 6. Le� to right : The boundary weighting termg(x ), the segmentation
constraint imagef , the constraint weighting image� , and the resulting
mirror segmentation imageu.

7.1 Feature Extraction
In the discretized mirror plane, we compute three sets of feature
channels. The �rst set is derived from geometry information, the
second set is based on image intensities, and the third set depends on
observations of the AprilTag. Fig. 5 visualizes the di�erent channels
in log-space for a baroque-style (ornate edge) mirror (see Fig. 8j).

Geometric Features.For the geometric features, we determine for
each depth sample the intersection of the ray from the camera of the
depth sensors with the mirror plane, and increment its intersection
count. We then classify each depth sample according to its signed
distanced to the mirror plane asOccluding (for d > � , i.e, for
samples in front of the mirror plane),Geometry close to the mirror
plane (for� � � d � � ) or Freespacefurther away than the mirror
plane (ford < � � ). Positive distance values indicate a sample in
front of the mirror plane. We use a threshold of� = 20mmto capture
depth and pose estimation noise as well as calibration inaccuracies.
Each of the features is de�ned as the ratio of classi�ed sample count
to total intersection count for each cell.

One characteristic of mirrors is that they create depth discontinu-
ities at their border between the re�ected scene and the frame for
framed mirrors [Käshammer and Nüchter 2015]. Frameless mirrors
create a depth discontinuity between the re�ected scene and the
scene behind the mirror. We capture both by determining the ratio of
Discontinuities in a cell, aggregated as above with one di�erence:
Since a discontinuity appears in a depth map as soon as a boundary
is seen from the camera or the projector, we additionally also deter-
mine for each sample the intersection of the projector sample ray

with the mirror plane and accumulate counts also for this cell. We
de�ne a depth sample as belonging to a depth discontinuity if the
range of depth values in its 9� 9 sample neighborhood in the depth
map exceeds 10cm. We use a fairly large neighborhood since depth
samples right at the boundary are often not reconstructed.

Intensity-based Features.To further constrain the mirror segmen-
tation, especially in the case of frameless mirrors, we consider two
intensity-based feature channels that use the projection of the color
images on the mirror plane: We compute theIntensity Variance
� 2

I for each cell, i.e., the variance of the intensities projected onto
that cell. Because of the variability of the re�ection in the mirror,
we expect high variance inside the mirror. In addition, we observe
higher variance for all non-re�ected scene parts that are not in the
mirror plane. This feature is thus related to the geometric, occluding
and freespace features.

TheMean Intensity Gradient kr I k corresponds to the geo-
metric discontinuities channel. For each cell in the mirror plane, we
average the image gradient norm. Since two di�erent parts of the
scene are observed at the boundary of the mirror, this leads to a
high average intensity gradient.

Observation-based Features.The AprilTag itself yields valuable
information. Given the properties of the AprilTag detector, we mark
for eachDetection the cells covering the locations of the four cor-
ners and the center of the Apriltag in the mirror plane. These provide
strong positive evidence of a mirror.

Finally, we compute where in an image we would see the AprilTag
if it would be re�ected in a mirror. We compute the average zero-
mean normalized cross-correlationZNCC [Brown 1992; Lewis 1995]
between the average tag appearance and the area in the current
image at the predicted tag location assuming re�ection about the
mirror plane. This channel allows us in particular to harvest non-
mirror areas as indicated by low ZNCC scores.

7.2 Boundary Extraction
Given the features described in the previous section, we perform
g-weighted Total Variation segmentation [Unger et al. 2008a,b] (de-
tailed below), which has been used successfully in semi-supervised
image segmentation. A binary mirror/non-mirror segmentation is
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relaxed to real values between 0 and 1. The segmentationu is de-
�ned as the solution to the following minimization over the mirror
image space
 :

u? = arg min
u 2[0;1]

=
Z



g(x)kr u(x)kd
 +

Z



� (x)ju(x)� f (x)j1d
 : (9)

g weights the boundary length regularization in the �rst term to en-
courage the boundary to lead through low values ing. In the second
term, the segmentationu is constrained to be close to the function
f through theL1 norm weighted by� . Higher values of� lead to a
stronger constraint on the segmentation. If� is 0, constraints are
not enforced.

We compute the boundary weighting termg from a combination
of the feature channelsci as

g(x) = exp(�
P

i 2I � i kr log(ci (x))k i ) ; (10)

where we use the set of channelsI = fDiscontinuities, Geometry,
Freespace,� 2

I , kr I kgand the tuned coe�cients� = f0:04;0:125;
0:05;0:05;0:1gand i = 0:8. This encapsulates the notion that we
want the mirror boundary in areas where the gradients of the feature
channels are high, as can be seen from Fig. 5 and the combinedg in
Fig. 6a.

Using the ZNCC channel and the AprilTag detections, we setf (x)
and� (x) at pixel locationx to constrain the segmentation to be 1
at tag detections and 0 wherever occluding structure was detected
and at the discretized mirror plane boundaries. Additionally, we
incorporate weak mirror/non-mirror detections from the ZNCC
feature channel:

(1) f (x) = 1 and� (x) = 103 for all target detections indicated in
the detection feature channel,

(2) f (x) = 1 and� (x) = 10� 1 for cells with ZNCC value> 0:8,
(3) f (x) = 0 and� (x) = 10� 1 for cells with ZNCC value< � 0:2,
(4) f (x) = 0 and� (x) = 103 for the boundary of the cell domain,
(5) f (x) = 0 and� (x) = 103 for cells with high Occlusion value.
(6) f (x) = 0 and� (x) = 0 for all other pixels.

We use aggressive thresholds and a small� value for the ZNCC-
derived constraints to re�ect the lower con�dence in them, since
they are in�uenced by errors in the overall system. This ensures a
low rate of misclassi�cations.

Equation 9 can be optimized e�ciently and optimally as described
in Unger et al. [2008a] using a primal-dual approach yielding the seg-
mentations shown in Fig. 6. We use� = 0:1 and� = 0:2 as proposed
by Unger et al. [2008a] and iterate our GPU-based implementation
for 10;000 iterations to ensure convergence.

We use marching squares to extract a sub-cell accurate piece-wise
linear mirror boundary as the iso-contour at value 0:5 in the segmen-
tation imageu. The marching squares algorithm is the equivalent
of marching cubes [Lorensen and Cline 1987] on a 2D grid.

8 HANDLING GLASS
As discussed in the previous sections, glass surfaces di�er from
mirrors in multiple ways. First, images of a glass surface are in
general a mixture between the transmitted and re�ected scenes.
The re�ected image is therefore both diminished in brightness and
potentially corrupted with the texture from the direct light path.

Fig. 7. Examples of o�set observed on glass at varying distances.

Any feature detection in the re�ected scene must therefore be robust
to relatively low contrast and signal to noise ratio.

Second, the re�ected scene is re�ected on the front and back
surfaces of the glass, yielding a double image. This e�ect depends
on the distance of the scanning rig from the glass surface (see Ap-
pendix A and Fig. 7). In our experience, the AprilTag library will
not detect tags if the o�set is too large and will otherwise typically
reconstruct one of the two tag locations. It is therefore su�cient to
keep a minimum distance from the glass pane while scanning.

Third, we need to distinguish between glass and mirror surfaces.
Our implementation classi�es a surface as glass if we observe geome-
try within the projected area of the detected AprilTag that is neither
at the depth of the AprilTag nor within� of the re�ective plane.
This is only possible for glass whereas for a mirror, the AprilTag
serves as an occluder. In other words, detection of geometry through
the image of the AprilTag implies we are seeing past the surface.
We note that this distinction will fail for shallow objects such as
picture frames leading to a misclassi�cation of a glass surface as
mirror, shown in Fig. 15d. An alternative classi�cation approach
would be to detect the intensity of the re�ected AprilTag, which is
signi�cantly lower for glass than for a mirror.

Apart from these changes, our pipeline is directly able to recon-
struct the plane as well as the boundary of framed glass surfaces as
we will show in the following section.

9 RESULTS
We implemented our reconstruction pipeline on a 6 core Intel Core
i7-5930K system with an NVIDIA TITAN Xp GPU and Ubuntu
16.04. The depth maps have a resolution of 960� 640 pixels; the
RGB images have a resolution of 1224� 1024 pixels. The baseline
reconstruction system (depth extraction, depth fusion, geometry
extraction using dual contouring, texture generation but excluding
SLAM) runs on this con�guration at� 37Hz. Using 12 threads, we
can estimate the AprilTag locations in the RGB images at� 70Hz.
The feature computation for boundary extraction runs at� 38Hz.
The throughput of the boundary segmentation optimization is�
60k pixels per second such that a 640� 480 pixel set of feature
channels takes� 5:12s to segment. Overall, reconstructing a mirror
area of� 0:5m2 from 700 frames takes about 90s. We used identical
parameters for all results (mirrors as well as glass).

We demonstrate our system on a wide variety of mirrors and glass
surfaces (see Fig. 8): a �rst surface mirror (Fig. 8a), frameless mirrors
(Fig. 8b�8d), a beveled mirror (Fig. 8e), framed mirrors (Fig. 8f�8m),
a frame mirror with texture on the mirror surface (Fig. 8h), a slightly
bent mirror (Fig. 8n), and glass surfaces (Fig. 8o�8r).
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(a) first surface (b) square (c) rectangular (d) round (e) beveled (f) closet (g) door mirror (h) textured (i) elliptical

(j) baroque (k) passive (l) double metal (m) wall (n) bent (o) door (p) blue cabinet (q) glass case (r) kitchen

Fig. 8. Overview of the mirrors and glass surfaces used in our experiments. The first surface mirror 8a serves as ground truth flat mirror. Mirrors 8b�8e are
frameless mirrors whereas 8e is frameless with a bevel. Mirrors 8f�8m are framed. The textured mirror 8h has a printed noise texture on the mirror surface,
which is faintly visible in the image. The duplicate baroque mirror 8k is reconstructed with the illumination on the tag switched o�, functioning as a passive
non-emi�ing tag. The double metal mirrors 8l are low quality metal-only mirrors (i.e., not based on glass). Mirror 8n is slightly bent, yielding a slimming e�ect.
Finally, 8o�8r show examples of glass surfaces captured.

Table 1. Error metrics (RMS error) for our reconstructions for a plane esti-
mated from a single observation (Sec. 5.4), for a plane determined by the
cluster center (Sec. 6) and for a plane estimated using the full optimization
(Sec. 5.3). Reprojection errors are given in pixels; geometric errors in mm.
All values are RMS errors. The geometric error for single observations is
always zero up to numerical precision. For the datasets marked with*, the
errors are accumulated over all reflective surfaces.

dataset single obs. clustering full estimation
reproj. reproj. geom. reproj. geom.
(pixel) (pixel) (mm) (pixel) (mm)

�rst surface 0.066 0.34 2.50 0.21 2.66
square 0.063 0.22 2.14 0.19 3.17
rectangular 0.056 0.36 1.77 0.34 3.51
round 0.061 0.55 1.72 0.51 2.23
beveled 0.058 1.39 2.04 1.35 8.17
closet 0.065 0.73 2.86 0.72 6.37
door mirror 0.075 0.92 3.04 0.92 3.05
textured 0.063 0.15 3.53 0.15 3.56
elliptical 0.065 0.25 2.77 0.22 3.67
baroque 0.059 0.54 2.11 0.50 5.64
passive 0.066 0.92 2.76 0.56 4.67
double metal* 0.067 1.39 3.40 1.42 3.91
wall 0.078 3.17 1.43 2.84 16.74
bent 0.075 5.61 3.54 6.33 29.46
door 0.28 0.58 4.68 0.50 4.77
blue cabinet* 0.085 1.41 2.92 1.27 5.98
glass case* 0.383 9.56 8.3 3.58 8.74
kitchen* 0.097 1.62 3.28 1.54 4.16

9.1 �antitative Results
In order to quantitatively evaluate our method, we evaluate the
reprojection error and the geometric error after multiple stages of
our pipeline. As shown in Table 1, we can accurately estimate the

mirror plane from a single observation for all datasets. Only the
door and the glass case show a noticeably larger error. The error
of the clustering-based estimation, which jointly estimates a single
plane for all observations, increases signi�cantly as expected. The
joint full estimation based on reprojection error is able to minimize
it while typically increasing the geometric error. This is especially
pronounced for the wall and bent standing mirror and the datasets
with multiple glass panes. We also note that the �rst surface mirror
yields one of the lowest geometric errors after full estimation.

9.2 Reconstructions
In Fig. 9, we show a side by side comparison of a real world input
image and the reconstruction produced by our method. Fig. 10
shows a full scene reconstruction rendered from a novel point of
view. In Figs. 1 and 11 through 13, we show reconstructed surfaces
containing mirrors or glass that produce erroneous geometry when
not properly handling mirrors in the left column, the detected mirror
surface and segmentation in the middle, and the rendered scene
given the reconstructed mirror on the right.

For all mirror examples naïvely, fusing the depth images pro-
duces poor reconstructions with holes where there should have
been surfaces and erroneous re�ected geometry behind the mirror
plane. While the segmentation of the frameless mirrors in Fig. 11
is not perfect around the boundaries, it still allows us to faithfully
reconstruct the scene. Note that previous work is completely unable
to handle such cases automatically. Our mirror segmentation can
handle arbitrary shaped mirror boundaries as can be seen in the
baroque-style mirror in Fig. 1. Interestingly, for the textured mirror
in Fig. 12, the naïve depth fusion actually partially reconstructs the
mirror surfaces due to partial re�ections of the IR dot pattern on the
texture. However, as can be seen, this does not disturb the proposed
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Fig. 9. Side by side rendering of the real world input image on the le� and
our reconstruction and rendering on the right.

Fig. 10. Full scene reconstruction showing multiple reconstructed mirrors
and their interreflections.

Fig. 11.Top row:frameless round mirror used as a table top (cf. Fig. 8d).
Bo�om row: beveled mirror mounted on a wall (cf. Fig. 8e).From le� to right:
Reconstructed geometry without taking mirrors into account, reconstruc-
tion taking the mirrors into account, and photorealistic rendering including
the mirrors.

mirror segmentation pipeline. The slightly bent mirror in Fig. 12 is
properly approximated as a planar mirror by the proposed system.

The glass cupboard windows in Fig. 13 are successfully recon-
structed, segmented and classi�ed as glass. Note that the pottery
inside the cupboard is reconstructed accurately through the glass.
Although complex in nature in terms of visible re�ections, our sys-
tem is able to reconstruct the glass museum display case with �ve
glass panes shown in Fig. 13 without any modi�cations.

Fig. 12.Top row:Framed round mirror hanging on a wall (cf. Fig. 8i).Middle
row: Framed mirror with some slight texture on its surface (cf. Fig. 8h).
Bo�om row: Slightly bent free standing mirror with a frame (cf. Fig. 8n).

Fig. 13.Top row:Cupboard with glass windows (cf. Fig. 8r).Bo�om row:
Glass museum case (cf. Fig. 8q).

We show in Fig. 14 that our approach does not require a backlit
tag to achieve accurate results. In this sequence, we rely only on the
ambient light available in the scene to illuminate the target. This
demonstrates that our technique also works with a simple matte
printout of an AprilTag and does not depend on di�cult to source
custom hardware.
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Fig. 14. Alternative reconstruction of the baroque mirror using a passive (i.e.,
non-illuminated) tag (see Figs. 1 and 8k).From le� to right:Sample frame
from the input image sequence, reconstructed geometry, and a textured
reflecting reconstruction.

(a) Curved (b) Occlusion (c) Glass pane (d) Picture frame

Fig. 15. Four examples of challenging structures that result in varying de-
grees of failure. The top row shows real photographs while the bo�om row
shows the output of our system. These failures fall into three categories:
non-planar mirror geometry (a), lack of border observability (b, c), and
incorrect glass-mirror classification (d).

9.3 Limitations and Failure Cases
While our approach is in general highly robust, we still observed
occasional failure cases at various stages of the processing pipeline.
If the AprilTag is not detected in any of the input frames, our ap-
proach fails catastrophically. This is typically caused by bad imaging
conditions such as blurred images due to fast scanner movement,
only partial visibility of the tag, low contrast (in particular on glass
surfaces with both passive and back-lit targets, see also Fig. 7) or
highly curved re�ective surfaces. This could be alleviated by a more
visible target, e.g., a set of LEDs marking corners of a planar tag.

Given an AprilTag detection, we can always reconstruct a mir-
ror plane for a single observation using the approach described in
Sec. 5.4. For slightly curved mirrors, approximate reconstruction
is possible as our approach will often produce a plausible plane �t
(e.g. Fig. 12, bottom). However, for a strongly curved mirror, our
representation is unable to produce an accurate estimate of the sur-
face, as shown in Fig. 15a (not visible is a phantom mirror plane
that our approach also estimated to lie behind the surface due to
clustering of highly distorted tag re�ections). The model we use

Fig. 16. Le�: The glass configuration. Right: The o�set in mm.

could be extended to account for this but would require a denser
set of observations to resolve the surface shape.

Compared to the plane estimation, detecting the boundary is
much more challenging since it relies on more subtle cues as can be
seen in many examples in this paper. In situations where the border
is occluded, for example in the bathroom scene in Fig. 15b, our
approach will not try to infer hidden structure and only resolves the
boundary up to the regularization capabilities of the segmentation.
Borderless glass presents a challenging case where the photometric
cues are too weak to constrain the boundary, shown in Fig. 15c.

As mentioned in Sec. 8, a failure case in our glass classi�cation
occurs when there is geometry within� of the estimated plane.
This is demonstrated in Fig. 15d with a picture frame glass that
is classi�ed as mirror. As discussed previously, a remedy to this
problem would be to calibrate the re�ected intensity of the tag on
mirrors and glass and use that cue to distinguish between the two,
as a re�ection from glass would be signi�cantly darker than one
from a mirror.

10 CONCLUSION AND FUTURE WORK
Mirror and glass surfaces are essential components of our daily
environment yet notoriously hard to scan. Starting from the simple
idea of robustly detecting a re�ected planar target, we demonstrate
a complete system for robust and accurate reconstruction of scenes
with mirrors and glass surfaces. Given the ease of capture, our
system could also be used to collect training data for learning-based
approaches to detect re�ective surfaces. Besides our core application
of scanning indoor scenes, we envision multiple extensions and
applications.

First, our tag requires a relatively clear re�ection in order to
be detected by the AprilTag detector. Using di�erent patterns and
detectors, one could extend our method to glossy and specular
surfaces. We also believe that our proposed technique could be
extended to explicitly handle surfaces with curvature. Next, our tag
provides a moving, active and patterned area light. We envision that
this could be used to also infer re�ectance information about other
non-re�ective surfaces in a scene. Finally, it would be interesting
to evaluate whether and how our approach could be integrated
into autonomous robots, allowing them to optically detect re�ective
surfaces, in particular when using only passive sensing techniques
such as classical (multi-view) stereo.
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A DERIVATION OF DOUBLE IMAGES ON GLASS
Fig. 16 gives the geometry for a fronto-parallel scanning rig observ-
ing a glass pane with �nite thickness. Given an incident ray hitting
the glass surface at an angle� , the refracted ray inside the glass will
travel under an angle� as determined by Snell's law:

sin�
sin�

=
nglass

nair
(11)

nglassandnair are the indices of refraction of the materials. Given a
baselineb between the camera and the tag and a distanced between
the scanning rig and the glass, the o�setD(d) can be computed as

D(d) = 2t tan� = 2t tan
 
sin� 1

 
nair

nglass
sin�

! !
(12)

= 2t tan
 
sin� 1

 
nair

nglass
sin

 
tan� 1 b

2d

!! !
(13)

Fig. 16 shows the o�setD(d) for a glass thickness of 5mm, a relative
index of refraction nair

nglass
of 0:66 and a baseline of 0:25m, which cor-

responds approximately to our setup. A single pixel on our AprilTag
is approximately 3:5mm wide, which corresponds to the o�set at
roughly 0:2m distance.
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