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Fig. 1. Reconstructing a scene with mirrors. From left to right: Input color image showing the scanner with attached AprilTag in a mirror, reconstructed

geometry without taking the mirrors into account, reconstruction taking the detected mirrors (rendered as cross-hatched area) into account and a photorealistic

rendering of the scene including the mirrors. Detecting the mirrors is crucial for accurate geometry reconstruction and realistic rendering.

Planar reflective surfaces such as glass and mirrors are notoriously hard to

reconstruct for most current 3D scanning techniques. When treated naïvely,

they introduce duplicate scene structures, effectively destroying the recon-

struction altogether. Our key insight is that an easy to identify structure

attached to the scannerÐin our case an AprilTagÐcan yield reliable informa-

tion about the existence and the geometry of glass and mirror surfaces in a

scene. We introduce a fully automatic pipeline that allows us to reconstruct

the geometry and extent of planar glass and mirror surfaces while being able

to distinguish between the two. Furthermore, our system can automatically

segment observations of multiple reflective surfaces in a scene based on their

estimated planes and locations. In the proposed setup, minimal additional

hardware is needed to create high-quality results. We demonstrate this using

reconstructions of several scenes with a variety of real mirrors and glass.

CCS Concepts: · Computing methodologies → 3D imaging; Shape

modeling; Reflectance modeling;

Additional Key Words and Phrases: 3D scanning, reflective surfaces, mirrors,

glass

ACM Reference Format:

Thomas Whelan, Michael Goesele, Steven J. Lovegrove, Julian Straub, Simon

Green, Richard Szeliski, Steven Butterfield, Shobhit Verma, and Richard

Newcombe. 2018. Reconstructing Scenes with Mirror and Glass Surfaces.

ACM Trans. Graph. 37, 4, Article 102 (August 2018), 11 pages. https://doi.org/

10.1145/3197517.3201319

*This work was carried out at Facebook Reality Labs.
Authors’ addresses: Thomas Whelan, Facebook Reality Labs, twhelan@fb.com; Michael
Goesele, Facebook Reality Labs and TU Darmstadt; Steven J. Lovegrove; Julian Straub;
Simon Green, Facebook Reality Labs; Richard Szeliski, Facebook; Steven Butterfield;
Shobhit Verma; Richard Newcombe, Facebook Reality Labs.

© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3197517.3201319.

1 INTRODUCTION

Active scanning techniques using Kinect-like sensors have recently

been used very successfully to reconstruct indoor scenes [Kähler

et al. 2015; Newcombe et al. 2011; Nießner et al. 2013]. One fre-

quently occurring element of such scenesÐreflective surfaces such

as mirrors and glassÐhas, rarely been treated in previous work.

While this at first sounds like a minor omission, mirrors actually

pose a significant problem for any reconstruction system. A perfect

mirror shows a perfect reflection of the world, which is indistin-

guishable from a direct observation of the mirrored world. The

mirror is therefore essentially łinvisiblež. The mirrored scene, how-

ever, will still be reconstructed using standard vision techniques.

Fig. 2 shows examples of bathrooms from the ScanNet dataset [Dai

et al. 2017] with reflected scene parts reconstructed behind mirrors.

This mirrored geometry overlaps with real geometry located be-

hind the mirror and interferes with its reconstruction. It is therefore

not only desirable to reconstruct mirrors as standard elements in a

scene, but also necessary in order to avoid invalid reconstructions

of the overall scene. Similarly, glass surfaces are typically not recon-

structed by sensors but should still be included in a reconstructed

model. Due to the prevalence of mirrors and glass in common in-

door environments, recent scene reconstruction approaches such

as Matterport3D [Chang et al. 2017] require the user to manually

select windows and mirrors in a scan.

In this paper, we propose a method to automatically detect and

reconstruct mirrors and glass surfaces in a scene (see Fig. 1). Our

key idea is to add a tag to the capture rig that can only be observed

when the camera faces a mirror or glass surface. In our work, we

use a mirrored version of an AprilTag [Olson 2011; Wang and Olson

2016]. Based on observations of this tag, we not only detect reflective

surfaces, but also robustly estimate the plane parameters of the
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Fig. 2. Example scans from the ScanNet dataset [Dai et al. 2017] with

artefacts due to mirrors.

surface. Additionally, we develop a multiple-feature-based approach

to detect the boundary of the planar mirroring surface.

Our contributions include:

• An automatic AprilTag-based approach, where we use a mir-

rored AprilTag to detect the existence of planar mirror or

glass surfaces in the scene.

• An automatic bundle adjustment-based calibration approach

to accurately detect the plane of the reflective surface as well

as the relative tag location.

• An automatic approach to accurately reconstruct the bound-

ary of framed and unframed mirror and glass surfaces and to

distinguish between the two surface types.

• A thorough evaluation of our approach using quantitative

measures as well as high quality renderings.

2 RELATED WORK

In this section, we survey related work on detecting and recon-

structing reflective surfaces and objects, focusing on the work most

relevant to our paper. We refer the reader to a recent state of the

art report for more details on recovering the geometry of specular

objects [Ihrke et al. 2010]. Our work uses a prototype 3D scanner,

which implements a standard projector-camera system with an in-

frared pattern and truncated signed distance function (TSDF) based

fusion. Since no modification to the scanning and reconstruction

system is necessary, we refer the reader to the literature on KinectFu-

sion and follow-up publications for details and related work [Kähler

et al. 2015; Newcombe et al. 2011; Nießner et al. 2013].

2.1 Detecting Planar Reflective Surfaces

Planar glass and mirrors are difficult to detect in regular images.

When light hits a glass surface, most of it enters the glass, is re-

fracted, and leaves at a different location on the back. Only a small

fraction of the light (typically less than 10%, as determined by the

Fresnel equations) is reflected on the front and back surfaces and

can be observed as two distinct, faint mirror images, unless it is

masked by the scene behind the glass [Shih et al. 2015]. The fact

that glass is a partially transparent and partially reflective surface

provides valuable information since one can actually observe two

distinct signals from the transmitted and reflected parts of the scene.

This is widely used in multi-signal time of flight sensors [Foster et al.

2013; Jiang et al. 2017; Koch et al. 2017b,a]. Several passive imaging

approaches also rely on detecting and disentangling these two dis-

tinct image components. Applications include reflection removal

[Arvanitopoulos et al. 2017; Xue et al. 2015] and scene reconstruc-

tion [Sinha et al. 2012; Wang et al. 2015; Wanner and Goldluecke

2013]. Other approaches rely on indirect observations, such as the

fact that glass absorbs some light, especially in the infrared part of

the spectrum [Klank et al. 2011] or changes the polarization state

of the light [Miyazaki et al. 2004].

A standard mirror is covered by a thin reflecting layer at the

back side of the glass. The reflection at this back side is typically

much stronger than the front reflection, leading to the well known

mirroring effect with hardly any observable double images. High

quality mirrors for scientific applications have a reflective layer

on the front surface (so called first surface mirrors), yielding an

even crisper reflection. Given that we cannot observe two separate

scenes, detecting mirror surfaces is very challenging. One option is

to switch modalities, e.g., to use ultrasonic distance measurements,

which are reflected from the mirror surface and can be reliably

observed under specific imaging geometries [Yang and Wang 2008;

Zhang et al. 2017].

In the optical domain, there are weak signals that can be used.

For example, time of flight scanning systems that return multiple

observations along the line of sight may return a weak signal re-

flected at the actual mirror surface. The presence of a framed mirror

can also be inferred from the observed depth discontinuity (also

called a jump edge) along the mirror-frame boundary [Käshammer

and Nüchter 2015; Yang and Wang 2011].

Active and purely passive optical approaches can detect themirror

symmetry in captured images, depth images, or complete scene

models [Yang and Wang 2011]. While this approach can in principle

give a reliable indicator of the presence of a mirror in a scene, it

fails if a part of the scene is only observed in the mirror and never

seen directly. Finally, curved specular surfaces can be detected using

their distinct distortion patterns [DelPozo and Savarese 2007].

2.2 Reconstructing Reflective Surfaces

The geometry of specular surfaces is typically recovered by de-

tecting the specular reflection of an extended target, enabling the

estimation of a normal direction to the surface observed at a given

pixel. The key challenge of this approach is that the target needs

to cover all relevant angles, which would in general require it to

completely surround the object [Balzer et al. 2014]. Most practical

approaches therefore use a limited-size target (see, e.g., [Liu et al.

2015; Tarini et al. 2005]) that can be moved around the object and

recorded in multiple capture sessions [Balzer et al. 2011]. In the

limit, one can even use the specular reflection of a single point light

source aggregated over many frames [Chen et al. 2006]. Alterna-

tively, passive capture approaches make use of the full environment

reflected in a planar [Sinha et al. 2012] or curved and more complex

surface [Godard et al. 2015]. For the special case of near-planar

surfaces, Ding and Yu [2008] interpret the reflection as observed

under orthographic projection as a general linear camera and deter-

mine its parameters from the observation of a checkerboard target.

Jacquet et al. [2013] use reflections of lines in large window panes

to reconstruct a normal field using a cut through the 3D video cube.
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2.3 Scenes with Mirror and Glass Surfaces

For active scanning applications, most systems are able to scan

through glass with a potential offset due to refraction. Scanning

through a mirror surface is always possible as long as all light rays

are reflected along the same planar mirror surface. This results in

the reconstruction of a mirrored copy of the true scene geometry,

located behind the mirror. Fasano et al. [2003] use mirrors in order

to scan hard to reach areas using a laser stripe pattern scanner. Since

regular mirrors provided low quality scan data, the authors use first

surface mirrors. They also propose an option for a hand-held mirror,

whose position they detect using markers on the mirror.

Foster et al. [2013] rely on the faint diffuse reflection observed on

glass (and mirror) surfaces using a multi-return time of flight-based

system. Given the physical reflection properties, glass can only be

observed in this way under a very restricted set of angles. They

extend the popular occupancy grid mapping, giving it the ability to

include surfaces that are only observable in a fraction of the frames

in which they should have been seen.

Jiang et al. [2017] use the intensity of the return signal for a

time-of-flight (TOF) sensor, the distance to the surface, and the

incident angle as features for a neural network-based classification

of glass surfaces in indoor environments. While sufficient for robot

navigation, their approach cannot yield high accuracy scan data.

Käshammer and Nüchter [2015] detect mirrors of known geom-

etry in TOF data. They find boundaries of framed mirrors using

the associated jump edges in depth. A similar metric is introduced

by Yang and Wang [2011] to detect candidate mirror locations. We

generalize the jump edge metric to also include frameless mirrors.

Further, we use the reflection of an active tag in order to determine

mirror planes. As a result, we are able to detect planar mirrors with

unknown, arbitrary geometry in a scene.

An alternative line of work combines ultrasonic sensors with

classical optical scanning in order to detect glass and mirror surfaces.

Yang andWang [2008] integrate a sonar sensor into a laser scanning

system to detect glass. Evidence of mirrors is detected at depth

discontinuities in the laser scans. The actual extent of a mirror

is detected by performing an ICP based registration of real and

reflected geometry.

Zhang et al. [2017] augment a Kinect scanning device with an

ultrasonic distance sensor. They look for differences in optical and

ultrasonic depths and use an elaborate MRF-based inference in

order to detect the extent of glass and mirror surfaces. They can

also reconstruct curved surfaces by fitting a parametric surface to

the points from the acoustic sensor. One of the key limitations of

ultrasonic depth sensors is that the surface needs to be observed at

near-orthogonal angles, whereas our camera has a wide field of view

and our tag is visible from a substantially larger set of orientations

of the scanning rig.

3 OVERVIEW

The easiest way to identify a mirror or other semi-reflective surface

such as glass in a scanning context is to identify the reflection of

the scanning device itself in the mirror. While this is a classical

vision problem with a certain expected error rate, detection can

be simplified by adding easy to detect features such as a colorful

area to the scanner. Since the scanner itself is typically not part of

the scene and needs to be removed from the scan (when directly

observed or seen in a mirror), this will have no negative impact on

the final scanned model.

We want, however, not only to detect the fact that a mirror is

present but also to recover its position, orientation, and extent.

For planar mirrors, this corresponds to finding the corresponding

symmetry transform (to determine position and orientation) and

defining the extent of the mirror plane. One way to solve the former

problem is to attach a rigid calibration target to the scanning system

that can be detected reliably and allows the stable matching of

points on the target with feature locations in the recorded images

[Rodrigues et al. 2010]. A simple prototype for such a system could

be a standard cell phone that displays a calibration structure, records

imageswith the front-facing camera, and performs all the processing.

Once calibrated, such a system could reconstruct the mirror plane

in the camera coordinate system from a single image.

In Sec. 4, we describe how we use an AprilTag-based calibration

target attached to our scanner in order to detect glass and mirror

surfaces and to reconstruct the mirror plane. We currently use the

RGB camera of our scanning system for target detection, but this

could also be performed in the infrared domain, where our pattern-

based depth camera is operating. Since our actively illuminated

(backlit) target emits light diffusely at a luminance level similar to

the scene, it can easily be detected under a wide range of viewing

directions while having minimal influence on scene illumination

or, in the infrared case, the directionally emitted high frequency

pattern of the projector.

Sec. 5 discusses how we jointly estimate the position of the target

with respect to the scanner and the mirror plane. We then describe

how we distinguish observations of multiple mirrors in order to

reconstruct each of them separately (Sec. 6). In Sec. 7, we detail our

approach to accurately detect the extent of the mirror before gener-

alizing our method to also detect glass surfaces such as windows

(Sec. 8). We evaluate the full system quantitatively and qualitatively

for a wide range of scenes and reflective surfaces (Sec. 9) and con-

clude with an outlook on future work.

4 DETECTING A MIRROR

To ensure a robust detection of our target, we use AprilTags [Olson

2011; Wang and Olson 2016], fiducial markers frequently used in the

robotics community. Detection using the authors’ free implementa-

tion1 happens in multiple phases. After some basic image processing

for local intensity normalization, candidate locations are detected

as continuous bright regions containing a dark region. Next, the

edges and corners of the dark square region are extracted and the

numerical code corresponding to the tag is robustly decoded. Finally,

the edge locations are refined. Note that in order to directly use the

existing AprilTag library, we manufactured a mirrored version of

the tag that can only be detected when it is observed in a mirror.

The output of the AprilTag library is the set of detected AprilTags

per frame. Each detection contains the ordered image-location of

the four corners and the tag’s center, the tag ID, as well as additional

information about the quality of the detection.

1https://april.eecs.umich.edu/software/apriltag/
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(a) Scanning rig. (b) Backlit mirrored AprilTag.

Fig. 3. The prototype of the scanning rig with attached backlit AprilTag.
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Fig. 4. Initialization of the optimization. Left: Estimation of the mirror plane

and the tag to camera transformation from at least three virtual camera

estimations. Right: Estimation of the mirror plane from a single frame given

known Tct .

The AprilTags were constructed by applying 3M 468MP pressure

sensitive adhesive to Thorlabs BKF12 black aluminum foil. The

foil was then cut on a water jet and then sandwiched between

sheets of ABS plastic with the adhesive side up. (Note that this

supports only the manufacture of codes that consist of a single

connected component.) The laminated pattern was thenmounted on

Metaphase backlights to ensure uniform illumination. We adjusted

the intensity of the backlights to match our overall system setup,

ensuring that no part of the captured tag is overexposed. Fig. 3 shows

the mirrored AprilTag mounted onto the backlight and attached to

our scanning rig. The width and height of the aluminum foil tag is

28.34mm.

5 MIRROR SURFACE ESTIMATION

In the following, we assume that a typical SLAM system yields an

accurate estimate of the pose of our scanning system for each frame

[Engel et al. 2018; Mur-Artal et al. 2015]. We formulate the problem

of estimating the mirror plane as minimizing the reprojection error

of the corner points of the AprilTag mounted to the scan head into

the camera view. This requires us to define the generative model

for the projection, which we introduce in the following section.

5.1 Definitions

A transformation Tba of a point from coordinate frame a into a

coordinate frame b is represented as

Tba =

[
Rba ab
0⊤ 1

]
∈ SE(3), (1)

where Rba ∈ SO(3) and ab ∈ R
3 is the origin of frame a expressed

in frame b such that ẋb ∝ Tba ẋa . The points xa and xb are points

in R3; ẋa and ẋb represents their homogeneous lifting to R4. In our

setting, we work with three coordinate frames:

• The corners of the AprilTag are defined in tag space t as

ct = (±ω2 ,±
ω
2 , 0). ω denotes the width and height of the

black portion of the AprilTag. The center of the AprilTag is

located at the origin of t .

• The camera defines the camera frame c with the image plane

aligned with the xy plane of the coordinate system.

• The world framew is defined as the reference frame given by

the SLAM system, which also yields the per-frame transfor-

mation Ticw from world to camera space as well as its inverse

Tiwc .

We define the plane of the mirror N using a standard plane pa-

rameterization as

N =

[
n̂

d

]
∈ R4, (2)

such that N · ẋ = 0 for points x on the plane. n̂ is the unit length

normal of the plane and d is a scalar which represents the closest

approach of the plane with the origin. Plane Na in frame a can be

expressed in frame b using the following expression: Nb = T⊤
ab

Na .

Note the unusual use of the transformation matrix Tab transposed

and not obeying the index notation ordering.

The symmetry transform S that transforms a point ẋa into the

virtual point v̇a as reflected in the planar mirror surface Na via

v̇a = S(Na )ẋa is then given by

S (N) ≡

[
R (n̂) 2dn̂

0⊤ 1

]
∈ R4×4 (3)

as described in Rodrigues et al. [2010]. The householder matrix

R (n̂) ≡
[
I3x3 − 2n̂n̂

⊤
]
∈ R3×3 (4)

defines a reflection on a plane through the origin.

5.2 Generative Model

Given the above definitions, we can nowwrite down the reprojection

error for p
j
t , the j’th tag corner (or tag center) in image i , using tag

coordinates t :

f i, j (θ ) = πc
(

TicwS (Nw ) TiwcTct ṗ
j
t

)

− p̃
i, j
c , (5)

where p̃c is the observed (noisy) measurement of p
j
t in c and πc

is camera c’s projection function, R3 → R2. We use the Kannala

Brandt fish-eye projection model [Kannala and Brandt 2006] for

this function. θ is the optimization state vector consisting of the

tag to camera transformation Tct and the mirror plane Nw . Once

the system is calibrated, we can treat Tct as fixed and include only

Nw . Combining all the observations of the tag yields the following

sum-of-squares objective:

F(θ ) =

N
∑

i=1

5
∑

j=1

[
f i, j (θ )

]2
, (6)

which we minimize using Ceres [Agarwal et al. 2018] with appro-

priate initialization as described in the following section. Updates

to Tct occur on the manifold of SE(3) and we use a local minimal
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parameterization for optimization, ∆ct ∈ se(3) with an update step

at each iteration of Tct ← Tcte
∆ct . We leave the homogeneous rep-

resentation Nw over-parameterized and divide by the magnitude of

the first three components after convergence to reach the canonical

representation as shown in Eq. 2.

Although we do not do so here, our reprojection error could

also be included as a term within a classic SLAM or structure from

motion system to improve localization and provide more thorough

Bayesian treatment of the complete acquisition system.

5.3 Initialization and Calibration

Since Eq. 6, which we seek to minimize, is non-convex and Ceres

relies on gradient-based optimization, we must ensure an adequate

initialization of the parameters to reach a globally optimal solution.

Rodrigues et al. [2010] describe the calibration of a system with a

fixed camera, a fixed object outside the camera’s view, and a moving

planar mirror, through which the camera can observe the object.

This is equivalent to our case of the scan system with a rigidly

connected camera and tag moving in front of a static mirror.

Following their approach, given known intrinsic calibration pa-

rameters for camera c and known dimensions of the AprilTag, we

compute the camera from virtual-target transform Tictv using stan-

dard exterior pose from known correspondence [Zhang 2000] for

each image of the tag in frame i . This is depicted to the left in Fig. 4.

The output of the exterior pose estimation is a 6 degrees-of-freedom

transform, but the mirror plane minimally parameterized in R3 has

only 3 degrees-of-freedom. The subset of SE(3) in which we ob-

serve motion informs us of the mirror plane. Given at least three

such transforms T1ctv ,T
2
ctv
,T3ctv , we can estimate the initial values

for the mirror plane Ñw which in turn allows us to compute the

real tag to camera transform T̃ct . In practice, we observed that it is

sufficient to estimate Ñw and to set T̃ct to the identity to initialize

our non-linear refinement.

5.4 Single Image Mirror Plane Estimation

Given the rigidity of the scanning system, we can calibrate the tag

to camera transform Tct once by minimizing Eq. 6 and freezing the

result. This allows us to estimate the mirror plane Ñw from a single

frame. Similar to above, we estimate the pose Tctv of the virtual

(i.e., reflected) AprilTag with respect to camera c given c’s intrinsic

parameters and the AprilTag’s known dimension ω. The mirror

plane can now be established as that which bisects the corresponding

real and virtual corner locations as depicted in Fig. 4 to the right.

We use these single image mirror estimations as input for the next

section, where we perform a clustering step to split observations

from multiple mirrors and to estimate the final plane parameters

for each mirror.

Note that we only need to see the AprilTag in a single image and

can then transfer the observation information to all other frames

using the scene geometry and SLAM poses. Observing the mirror

(and potentially the AprilTag) in additional frames may increase

the accuracy of the estimated mirror plane and helps in accurately

detecting the mirror boundary as described in Sec. 7.

6 MULTI-MIRROR PARAMETER ESTIMATION

We proceed by assuming that each AprilTag observation i belongs

to its own mirror for which we can then estimate Ni
w as discussed

previously. Additionally, we can intersect the center of the 2D tag

detection with the estimated plane to find the observation point

on the surface of the mirror through which our AprilTag has been

reflected. Given the low false-detection rate of AprilTags, we have

high confidence that this point belongs to a mirror surface. For each

observation, we now have a point and normal pair, [Piw , n̂
i
w ].

To separate the observations into sets for each mirror in the scene,

we use a non-parametric clustering algorithm that we denote as

DP-planes, since it is derived from DP-means [Kulis and Jordan

2011] and DP-vMF-means [Straub et al. 2015]. Except for using

different distance metrics, these algorithms perform the same k-

means-like alternating optimization: In step (1): incrementally assign

data points to the closest existing cluster unless the closest cluster

is further than some threshold λ. In the latter case, a new cluster is

instantiated from the query data point. In step (2): recompute the

cluster centers given all associated data points. For a more detailed

algorithm description, we refer to the original papers. We take the

existing algorithm but modify the distance metric to a symmetrized

point-to-plane distance:

dist ([pa , n̂a], [pb , n̂b ]) =
1

2
(∥ (pa − pb ) · n̂b ∥ + ∥ (pb − pa ) · n̂a ∥) .

(7)

This distance measures how compatible two planar observations

are to one another and does not require that we choose an arbitrary

weighting between the angular and Euclidean components of the

observations. In step (2) of the DP-planes algorithm cluster centers

in the planar space are computed from the set of points pi and

normals ni in cluster k , Ik = {pi ,ni }
Nk

i=1, as

pk =

∑

i ∈Ik pi

Nk
nk =

∑

i ∈Ik ni

∥
∑

i ∈Ik ni ∥
. (8)

As in the aforementioned algorithms, the DP-planes algorithm as-

signs data points to cluster centers via the symmetric point-to-plane

distance if the distance is within some threshold λ, measured in

meters. If the distance exceeds this threshold, a new cluster is ini-

tialized with the value of the observation. We find λ = 10 cm to

yield good mirror-plane segmentation in all our experiments with

non-coplanar mirrors. For coplanar mirrors, we can refine the seg-

mentation using the boundary detection (see Sec. 7) and recompute

the mirror plane parameters for newly segmented mirrors.

Equation 8 directly provides a joint estimate of the plane pa-

rameters for each individual mirror, derived from the previously

independently estimated oriented surface samples. We use these for

all subsequent steps.

7 MIRROR BOUNDARY DETECTION

Given the mirror plane estimated in Sec. 5, we use it as a natural

parameterization for boundary extraction. We discretize the plane

into a grid with square cells, typically using a resolution of 5mm,

project all features discussed in the following onto this plane, and

extract the boundary using a total variation-based segmentation.
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(a) Discontinuities (b) Occluding (c) Geometry (d) Freespace (e) σ 2
I

(f) ∥∇I ∥ (g) Detections (h) ZNCC

Fig. 5. We explore eight different feature channels to facilitate mirror segmentation. All channels are shown in log-scale using the łhotž colorscheme except

the rightmost ZNCC channel which is displayed from −1 in blue to 1 in red. The first four features are computed from the depth image. The discontinuities

channel (a) indicates the mirror boundaries and Occluding (b), Geometry (c) and Freespace (b) indicate structures in front of, right around and behind the

mirror plane. Feature channels (e) and (f) aim to extract mirror boundary information from image intensities: high intensity variance σ 2
I
indicates a reflective

surface and high average intensity gradient ∥∇I ∥ is expected at the mirror boundary. Channel Detections (g) accumulates the AprilTag detections. Using the

zero-mean normalized cross-correlation (ZNCC) of the AprilTag appearance with the actual predicted image intensities, the ZNCC channel (h) allows us to

harvest non-mirror detections at low ZNCC-valued areas.

(a) д (b) f (c) λ (d) u

Fig. 6. Left to right : The boundary weighting term д (x ), the segmentation

constraint image f , the constraint weighting image λ, and the resulting

mirror segmentation image u .

7.1 Feature Extraction

In the discretized mirror plane, we compute three sets of feature

channels. The first set is derived from geometry information, the

second set is based on image intensities, and the third set depends on

observations of the AprilTag. Fig. 5 visualizes the different channels

in log-space for a baroque-style (ornate edge) mirror (see Fig. 8j).

Geometric Features. For the geometric features, we determine for

each depth sample the intersection of the ray from the camera of the

depth sensors with the mirror plane, and increment its intersection

count. We then classify each depth sample according to its signed

distance d to the mirror plane as Occluding (for d > δ , i.e, for

samples in front of the mirror plane), Geometry close to the mirror

plane (for −δ ≤ d ≤ δ ) or Freespace further away than the mirror

plane (for d < −δ ). Positive distance values indicate a sample in

front of themirror plane.We use a threshold of δ = 20mm to capture

depth and pose estimation noise as well as calibration inaccuracies.

Each of the features is defined as the ratio of classified sample count

to total intersection count for each cell.

One characteristic of mirrors is that they create depth discontinu-

ities at their border between the reflected scene and the frame for

framed mirrors [Käshammer and Nüchter 2015]. Frameless mirrors

create a depth discontinuity between the reflected scene and the

scene behind the mirror. We capture both by determining the ratio of

Discontinuities in a cell, aggregated as above with one difference:

Since a discontinuity appears in a depth map as soon as a boundary

is seen from the camera or the projector, we additionally also deter-

mine for each sample the intersection of the projector sample ray

with the mirror plane and accumulate counts also for this cell. We

define a depth sample as belonging to a depth discontinuity if the

range of depth values in its 9 × 9 sample neighborhood in the depth

map exceeds 10 cm. We use a fairly large neighborhood since depth

samples right at the boundary are often not reconstructed.

Intensity-based Features. To further constrain the mirror segmen-

tation, especially in the case of frameless mirrors, we consider two

intensity-based feature channels that use the projection of the color

images on the mirror plane: We compute the Intensity Variance

σ 2
I
for each cell, i.e., the variance of the intensities projected onto

that cell. Because of the variability of the reflection in the mirror,

we expect high variance inside the mirror. In addition, we observe

higher variance for all non-reflected scene parts that are not in the

mirror plane. This feature is thus related to the geometric, occluding

and freespace features.

The Mean Intensity Gradient ∥∇I ∥ corresponds to the geo-

metric discontinuities channel. For each cell in the mirror plane, we

average the image gradient norm. Since two different parts of the

scene are observed at the boundary of the mirror, this leads to a

high average intensity gradient.

Observation-based Features. The AprilTag itself yields valuable

information. Given the properties of the AprilTag detector, we mark

for each Detection the cells covering the locations of the four cor-

ners and the center of the Apriltag in themirror plane. These provide

strong positive evidence of a mirror.

Finally, we compute where in an image wewould see the AprilTag

if it would be reflected in a mirror. We compute the average zero-

mean normalized cross-correlationZNCC [Brown 1992; Lewis 1995]

between the average tag appearance and the area in the current

image at the predicted tag location assuming reflection about the

mirror plane. This channel allows us in particular to harvest non-

mirror areas as indicated by low ZNCC scores.

7.2 Boundary Extraction

Given the features described in the previous section, we perform

g-weighted Total Variation segmentation [Unger et al. 2008a,b] (de-

tailed below), which has been used successfully in semi-supervised

image segmentation. A binary mirror/non-mirror segmentation is
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relaxed to real values between 0 and 1. The segmentation u is de-

fined as the solution to the following minimization over the mirror

image space Ω:

u⋆ = argmin
u ∈[0,1]

=

∫

Ω
д(x )∥∇u (x )∥dΩ+

∫

Ω
λ(x ) |u (x )− f (x ) |1dΩ . (9)

д weights the boundary length regularization in the first term to en-

courage the boundary to lead through low values in д. In the second

term, the segmentation u is constrained to be close to the function

f through the L1 norm weighted by λ. Higher values of λ lead to a

stronger constraint on the segmentation. If λ is 0, constraints are

not enforced.

We compute the boundary weighting term д from a combination

of the feature channels ci as

д(x ) = exp (−
∑

i ∈I αi ∥∇ log(ci (x ))∥
γi ) , (10)

where we use the set of channels I = {Discontinuities, Geometry,

Freespace, σ 2
I
, ∥∇I ∥} and the tuned coefficients α = {0.04, 0.125,

0.05, 0.05, 0.1} and γi = 0.8. This encapsulates the notion that we

want the mirror boundary in areas where the gradients of the feature

channels are high, as can be seen from Fig. 5 and the combined д in

Fig. 6a.

Using the ZNCC channel and the AprilTag detections, we set f (x )

and λ(x ) at pixel location x to constrain the segmentation to be 1

at tag detections and 0 wherever occluding structure was detected

and at the discretized mirror plane boundaries. Additionally, we

incorporate weak mirror/non-mirror detections from the ZNCC

feature channel:

(1) f (x ) = 1 and λ(x ) = 103 for all target detections indicated in

the detection feature channel,

(2) f (x ) = 1 and λ(x ) = 10−1 for cells with ZNCC value > 0.8,

(3) f (x ) = 0 and λ(x ) = 10−1 for cells with ZNCC value < −0.2,

(4) f (x ) = 0 and λ(x ) = 103 for the boundary of the cell domain,

(5) f (x ) = 0 and λ(x ) = 103 for cells with high Occlusion value.

(6) f (x ) = 0 and λ(x ) = 0 for all other pixels.

We use aggressive thresholds and a small λ value for the ZNCC-

derived constraints to reflect the lower confidence in them, since

they are influenced by errors in the overall system. This ensures a

low rate of misclassifications.

Equation 9 can be optimized efficiently and optimally as described

in Unger et al. [2008a] using a primal-dual approach yielding the seg-

mentations shown in Fig. 6. We use θ = 0.1 and τ = 0.2 as proposed

by Unger et al. [2008a] and iterate our GPU-based implementation

for 10, 000 iterations to ensure convergence.

We use marching squares to extract a sub-cell accurate piece-wise

linear mirror boundary as the iso-contour at value 0.5 in the segmen-

tation image u. The marching squares algorithm is the equivalent

of marching cubes [Lorensen and Cline 1987] on a 2D grid.

8 HANDLING GLASS

As discussed in the previous sections, glass surfaces differ from

mirrors in multiple ways. First, images of a glass surface are in

general a mixture between the transmitted and reflected scenes.

The reflected image is therefore both diminished in brightness and

potentially corrupted with the texture from the direct light path.

Fig. 7. Examples of offset observed on glass at varying distances.

Any feature detection in the reflected scene must therefore be robust

to relatively low contrast and signal to noise ratio.

Second, the reflected scene is reflected on the front and back

surfaces of the glass, yielding a double image. This effect depends

on the distance of the scanning rig from the glass surface (see Ap-

pendix A and Fig. 7). In our experience, the AprilTag library will

not detect tags if the offset is too large and will otherwise typically

reconstruct one of the two tag locations. It is therefore sufficient to

keep a minimum distance from the glass pane while scanning.

Third, we need to distinguish between glass and mirror surfaces.

Our implementation classifies a surface as glass if we observe geome-

try within the projected area of the detected AprilTag that is neither

at the depth of the AprilTag nor within δ of the reflective plane.

This is only possible for glass whereas for a mirror, the AprilTag

serves as an occluder. In other words, detection of geometry through

the image of the AprilTag implies we are seeing past the surface.

We note that this distinction will fail for shallow objects such as

picture frames leading to a misclassification of a glass surface as

mirror, shown in Fig. 15d. An alternative classification approach

would be to detect the intensity of the reflected AprilTag, which is

significantly lower for glass than for a mirror.

Apart from these changes, our pipeline is directly able to recon-

struct the plane as well as the boundary of framed glass surfaces as

we will show in the following section.

9 RESULTS

We implemented our reconstruction pipeline on a 6 core Intel Core

i7-5930K system with an NVIDIA TITAN Xp GPU and Ubuntu

16.04. The depth maps have a resolution of 960 × 640 pixels; the

RGB images have a resolution of 1224 × 1024 pixels. The baseline

reconstruction system (depth extraction, depth fusion, geometry

extraction using dual contouring, texture generation but excluding

SLAM) runs on this configuration at ≈ 37Hz. Using 12 threads, we

can estimate the AprilTag locations in the RGB images at ≈ 70Hz.

The feature computation for boundary extraction runs at ≈ 38Hz.

The throughput of the boundary segmentation optimization is ≈

60k pixels per second such that a 640 × 480 pixel set of feature

channels takes ≈ 5.12 s to segment. Overall, reconstructing a mirror

area of ≈ 0.5m2 from 700 frames takes about 90 s . We used identical

parameters for all results (mirrors as well as glass).

We demonstrate our system on a wide variety of mirrors and glass

surfaces (see Fig. 8): a first surface mirror (Fig. 8a), frameless mirrors

(Fig. 8bś8d), a beveled mirror (Fig. 8e), framed mirrors (Fig. 8fś8m),

a frame mirror with texture on the mirror surface (Fig. 8h), a slightly

bent mirror (Fig. 8n), and glass surfaces (Fig. 8oś8r).
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(a) first surface (b) square (c) rectangular (d) round (e) beveled (f) closet (g) door mirror (h) textured (i) elliptical

(j) baroque (k) passive (l) double metal (m) wall (n) bent (o) door (p) blue cabinet (q) glass case (r) kitchen

Fig. 8. Overview of the mirrors and glass surfaces used in our experiments. The first surface mirror 8a serves as ground truth flat mirror. Mirrors 8bś8e are

frameless mirrors whereas 8e is frameless with a bevel. Mirrors 8fś8m are framed. The textured mirror 8h has a printed noise texture on the mirror surface,

which is faintly visible in the image. The duplicate baroque mirror 8k is reconstructed with the illumination on the tag switched off, functioning as a passive

non-emitting tag. The double metal mirrors 8l are low quality metal-only mirrors (i.e., not based on glass). Mirror 8n is slightly bent, yielding a slimming effect.

Finally, 8oś8r show examples of glass surfaces captured.

Table 1. Error metrics (RMS error) for our reconstructions for a plane esti-

mated from a single observation (Sec. 5.4), for a plane determined by the

cluster center (Sec. 6) and for a plane estimated using the full optimization

(Sec. 5.3). Reprojection errors are given in pixels; geometric errors in mm.

All values are RMS errors. The geometric error for single observations is

always zero up to numerical precision. For the datasets marked with *, the

errors are accumulated over all reflective surfaces.

dataset single obs. clustering full estimation

reproj. reproj. geom. reproj. geom.

(pixel) (pixel) (mm) (pixel) (mm)

first surface 0.066 0.34 2.50 0.21 2.66

square 0.063 0.22 2.14 0.19 3.17

rectangular 0.056 0.36 1.77 0.34 3.51

round 0.061 0.55 1.72 0.51 2.23

beveled 0.058 1.39 2.04 1.35 8.17

closet 0.065 0.73 2.86 0.72 6.37

door mirror 0.075 0.92 3.04 0.92 3.05

textured 0.063 0.15 3.53 0.15 3.56

elliptical 0.065 0.25 2.77 0.22 3.67

baroque 0.059 0.54 2.11 0.50 5.64

passive 0.066 0.92 2.76 0.56 4.67

double metal* 0.067 1.39 3.40 1.42 3.91

wall 0.078 3.17 1.43 2.84 16.74

bent 0.075 5.61 3.54 6.33 29.46

door 0.28 0.58 4.68 0.50 4.77

blue cabinet* 0.085 1.41 2.92 1.27 5.98

glass case* 0.383 9.56 8.3 3.58 8.74

kitchen* 0.097 1.62 3.28 1.54 4.16

9.1 Quantitative Results

In order to quantitatively evaluate our method, we evaluate the

reprojection error and the geometric error after multiple stages of

our pipeline. As shown in Table 1, we can accurately estimate the

mirror plane from a single observation for all datasets. Only the

door and the glass case show a noticeably larger error. The error

of the clustering-based estimation, which jointly estimates a single

plane for all observations, increases significantly as expected. The

joint full estimation based on reprojection error is able to minimize

it while typically increasing the geometric error. This is especially

pronounced for the wall and bent standing mirror and the datasets

with multiple glass panes. We also note that the first surface mirror

yields one of the lowest geometric errors after full estimation.

9.2 Reconstructions

In Fig. 9, we show a side by side comparison of a real world input

image and the reconstruction produced by our method. Fig. 10

shows a full scene reconstruction rendered from a novel point of

view. In Figs. 1 and 11 through 13, we show reconstructed surfaces

containing mirrors or glass that produce erroneous geometry when

not properly handling mirrors in the left column, the detected mirror

surface and segmentation in the middle, and the rendered scene

given the reconstructed mirror on the right.

For all mirror examples naïvely, fusing the depth images pro-

duces poor reconstructions with holes where there should have

been surfaces and erroneous reflected geometry behind the mirror

plane. While the segmentation of the frameless mirrors in Fig. 11

is not perfect around the boundaries, it still allows us to faithfully

reconstruct the scene. Note that previous work is completely unable

to handle such cases automatically. Our mirror segmentation can

handle arbitrary shaped mirror boundaries as can be seen in the

baroque-style mirror in Fig. 1. Interestingly, for the textured mirror

in Fig. 12, the naïve depth fusion actually partially reconstructs the

mirror surfaces due to partial reflections of the IR dot pattern on the

texture. However, as can be seen, this does not disturb the proposed
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Fig. 9. Side by side rendering of the real world input image on the left and

our reconstruction and rendering on the right.

Fig. 10. Full scene reconstruction showing multiple reconstructed mirrors

and their interreflections.

Fig. 11. Top row: frameless round mirror used as a table top (cf. Fig. 8d).

Bottom row: beveled mirror mounted on a wall (cf. Fig. 8e). From left to right:

Reconstructed geometry without taking mirrors into account, reconstruc-

tion taking the mirrors into account, and photorealistic rendering including

the mirrors.

mirror segmentation pipeline. The slightly bent mirror in Fig. 12 is

properly approximated as a planar mirror by the proposed system.

The glass cupboard windows in Fig. 13 are successfully recon-

structed, segmented and classified as glass. Note that the pottery

inside the cupboard is reconstructed accurately through the glass.

Although complex in nature in terms of visible reflections, our sys-

tem is able to reconstruct the glass museum display case with five

glass panes shown in Fig. 13 without any modifications.

Fig. 12. Top row: Framed round mirror hanging on a wall (cf. Fig. 8i).Middle

row: Framed mirror with some slight texture on its surface (cf. Fig. 8h).

Bottom row: Slightly bent free standing mirror with a frame (cf. Fig. 8n).

Fig. 13. Top row: Cupboard with glass windows (cf. Fig. 8r). Bottom row:

Glass museum case (cf. Fig. 8q).

We show in Fig. 14 that our approach does not require a backlit

tag to achieve accurate results. In this sequence, we rely only on the

ambient light available in the scene to illuminate the target. This

demonstrates that our technique also works with a simple matte

printout of an AprilTag and does not depend on difficult to source

custom hardware.
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Fig. 14. Alternative reconstruction of the baroque mirror using a passive (i.e.,

non-illuminated) tag (see Figs. 1 and 8k). From left to right: Sample frame

from the input image sequence, reconstructed geometry, and a textured

reflecting reconstruction.

(a) Curved (b) Occlusion (c) Glass pane (d) Picture frame

Fig. 15. Four examples of challenging structures that result in varying de-

grees of failure. The top row shows real photographs while the bottom row

shows the output of our system. These failures fall into three categories:

non-planar mirror geometry (a), lack of border observability (b, c), and

incorrect glass-mirror classification (d).

9.3 Limitations and Failure Cases

While our approach is in general highly robust, we still observed

occasional failure cases at various stages of the processing pipeline.

If the AprilTag is not detected in any of the input frames, our ap-

proach fails catastrophically. This is typically caused by bad imaging

conditions such as blurred images due to fast scanner movement,

only partial visibility of the tag, low contrast (in particular on glass

surfaces with both passive and back-lit targets, see also Fig. 7) or

highly curved reflective surfaces. This could be alleviated by a more

visible target, e.g., a set of LEDs marking corners of a planar tag.

Given an AprilTag detection, we can always reconstruct a mir-

ror plane for a single observation using the approach described in

Sec. 5.4. For slightly curved mirrors, approximate reconstruction

is possible as our approach will often produce a plausible plane fit

(e.g. Fig. 12, bottom). However, for a strongly curved mirror, our

representation is unable to produce an accurate estimate of the sur-

face, as shown in Fig. 15a (not visible is a phantom mirror plane

that our approach also estimated to lie behind the surface due to

clustering of highly distorted tag reflections). The model we use

baseline b

thickness t

θ θ

α α

air

glass

offset Ddistance

to glass d

Fig. 16. Left: The glass configuration. Right: The offset in mm.

could be extended to account for this but would require a denser

set of observations to resolve the surface shape.

Compared to the plane estimation, detecting the boundary is

much more challenging since it relies on more subtle cues as can be

seen in many examples in this paper. In situations where the border

is occluded, for example in the bathroom scene in Fig. 15b, our

approach will not try to infer hidden structure and only resolves the

boundary up to the regularization capabilities of the segmentation.

Borderless glass presents a challenging case where the photometric

cues are too weak to constrain the boundary, shown in Fig. 15c.

As mentioned in Sec. 8, a failure case in our glass classification

occurs when there is geometry within δ of the estimated plane.

This is demonstrated in Fig. 15d with a picture frame glass that

is classified as mirror. As discussed previously, a remedy to this

problem would be to calibrate the reflected intensity of the tag on

mirrors and glass and use that cue to distinguish between the two,

as a reflection from glass would be significantly darker than one

from a mirror.

10 CONCLUSION AND FUTURE WORK

Mirror and glass surfaces are essential components of our daily

environment yet notoriously hard to scan. Starting from the simple

idea of robustly detecting a reflected planar target, we demonstrate

a complete system for robust and accurate reconstruction of scenes

with mirrors and glass surfaces. Given the ease of capture, our

system could also be used to collect training data for learning-based

approaches to detect reflective surfaces. Besides our core application

of scanning indoor scenes, we envision multiple extensions and

applications.

First, our tag requires a relatively clear reflection in order to

be detected by the AprilTag detector. Using different patterns and

detectors, one could extend our method to glossy and specular

surfaces. We also believe that our proposed technique could be

extended to explicitly handle surfaces with curvature. Next, our tag

provides a moving, active and patterned area light. We envision that

this could be used to also infer reflectance information about other

non-reflective surfaces in a scene. Finally, it would be interesting

to evaluate whether and how our approach could be integrated

into autonomous robots, allowing them to optically detect reflective

surfaces, in particular when using only passive sensing techniques

such as classical (multi-view) stereo.
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A DERIVATION OF DOUBLE IMAGES ON GLASS

Fig. 16 gives the geometry for a fronto-parallel scanning rig observ-

ing a glass pane with finite thickness. Given an incident ray hitting

the glass surface at an angle θ , the refracted ray inside the glass will

travel under an angle α as determined by Snell’s law:

sinθ

sinα
=

nglass

nair
(11)

nglass and nair are the indices of refraction of the materials. Given a

baseline b between the camera and the tag and a distance d between

the scanning rig and the glass, the offset D (d ) can be computed as

D (d ) = 2t tanα = 2t tan

(

sin−1
(

nair

nglass
sinθ

))

(12)

= 2t tan

(

sin−1
(

nair

nglass
sin

(

tan−1
b

2d

)))

(13)

Fig. 16 shows the offset D (d ) for a glass thickness of 5mm, a relative

index of refraction nair
nglass

of 0.66 and a baseline of 0.25m, which cor-

responds approximately to our setup. A single pixel on our AprilTag

is approximately 3.5mm wide, which corresponds to the offset at

roughly 0.2m distance.
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